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a b s t r a c t

There exist two EWMA-type dispersion charts for monitoring dispersion increases in the
literature. One resets the EWMA statistic to zero whenever it is below zero. The other
one truncates negative normalized observations to zero in the EWMA statistic. This paper
proposes two one-sided EWMA charts for detecting dispersion increases and decreases,
respectively, and one two-sided EWMA chart for monitoring dispersion increases or
decreases simultaneously. Simulation studies show that the proposed upper-sided EWMA
chart performs better than the two existing counterparts for detecting increases in
dispersion, and that the proposed lower-sided EWMA chart significantly outperforms
the two lower-sided EWMA charts developed similar to their two existing upper-sided
EWMA charts for detecting decreases in dispersion. Moreover, the proposed two-sided
EWMA chart provides much better sensitivity than the two two-sided EWMA charts
generalized from the two existing upper-sided EWMA charts for detecting overall changes
in dispersion.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Manufacturing processes can be monitored by using statistical process control (SPC) charts. For example, a Shewhart X̄
chart is usually used tomonitor the processmeanwhile an R or S chart is adopted tomonitor the process dispersion. Inmost
practical applications, it is even more important to monitor changes in process dispersion because an increase of process
variance indicates deterioration of the process while a decrease of process variance means an improvement of the process
capability. It is meaningless to claim a change of process mean unless it is sure that the process variance is in control.
In addition to the Shewhart X̄ chart, the CUSUM (Page, 1954) and EWMA (Roberts, 1959) charts are the two most com-

monly used charts for monitoring process mean due to their simplicity and good performance. Compared to the Shewhart
X̄ chart, the advantage of the CUSUM and EWMA charts results from the accumulation of previous and current information
for process monitoring. To monitor process dispersion, rational subgroups of samples are collected and the sample range R
or variance S2 is then computed for monitoring variability of each subgroup. Riaz (2008) proposed a Q chart based on the
interquartile range for monitoring changes in process dispersion. Human et al. (2010) studied the Shewhart-type S2, S and
R charts when the mean and variance of the process are estimated from the preliminary data. Similar to the Shewhart X̄
chart, the R or S2 chart only uses information of the present subgroup of data and frequently has limited sensitivity to small
to moderate changes in process dispersion. Recently more authors had used various CUSUM and EWMA charts for moni-
toring process dispersion. Jandhyala et al. (2002) studied the null distribution of the generalized likelihood ratio statistic
for a step change in the variance of any sequence of independent χ2 statistics, which can be applied to monitoring process
variance. Castagliola (2005) used a three-parameter logarithmic transformation to derive an S2-EWMA chart for monitoring
process variance. Knoth (2006) evaluated the performance of CUSUM charts based on S2 for normal processes. Castagliola
et al. (2007) introduced a variable sampling interval S2-EWMA chart for monitoring process variance. Machado and Costa
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(2008) developed EWMA charts based on the maximum of the two sample variances to monitor the covariance matrix of
a bivariate process. Vermaat et al. (2008) proposed EWMA control chart limits for the first- and second-order autoregres-
sive processes. Maravelakis and Castagliola (2009) investigated an EWMA chart for monitoring process standard deviation
when parameters of the process are estimated. In addition to the aforementioned papers, there is rich literature related to
monitoring process variance. This includes Page (1963),Wortham and Ringer (1971), Hawkins (1981), Sweet (1986), Tuprah
and Ncube (1987), Ng and Case (1989), Lowry et al. (1993), Acosta-Mejia and Pignatiello (2000), Sparks (2003), Renolds and
Stoumbos (2006), Liu et al. (2007), Chen and Chen (2007), Zhou et al. (2010), and Zhang et al. (2010).
The CUSUM and EWMA charts usually make use of two kinds of statistics for detecting changes in process variance. The

first one is the sample variance or the mean squared deviation from the target. Note that either one of the two statistics is
skewed to the right. As a consequence, the resulting two-sided CUSUM and EWMA charts for monitoring process variance
are frequently ARL-biased procedures. A control chart is ARL-biased if there exists an out-of-control ARL (ARL1) greater
than the in-control ARL (ARL0). The second statistic, which the CUSUM and EWMA charts utilize, is usually obtained by
transforming the sample variance. The logarithmic transformation of the sample variance, among various transformations,
is the most commonly used transformation because the transformed statistic has an approximate normal distribution. A
sample of research using ln(S2) includes Box et al. (1978, p. 234), Crowder and Hamilton (1992a), Acosta-Mejia et al. (1999),
Chen et al. (2001), and Shu and Jiang (2008).
Chang and Gan (1995) compared the performance of the CUSUM charts based on S2 and ln(S2). They concluded that

both charts have similar performance, but the CUSUM chart based on S2 is slightly better than that based on ln(S2) at
signaling increases in process variance. Although using S2 in a variance chart gives slightly better efficiency, there may
be some advantages of utilizing ln(S2) in practice as described below. Note that the distribution of S2 is rightly skewed, and
as a result, the two-sided CUSUMor EWMA chart based on S2 would not be symmetrical. In contrast, due to the approximate
normality, utilizing ln(S2) in the two-sided CUSUM or EWMA chart makes the resulting control limits nearly symmetrical,
which would deal with an increase or a decrease of the process variance pretty much the same way. Consequently, unlike
using either S2 or mean squared deviation from the target, the two-sided CUSUM or EWMA chart of using ln(S2) is nearly
ARL-unbiased. It is known that the variance of ln(S2) approximately only depends on the sample size, and can be treated
as a constant. The stability of the variance of ln(S2) results in certain simplicity in establishing control limits for ln(S2) as
compared to the control charts based on S2. However, both S2 and ln(S2) are commonly used in detecting changes in process
variance.
Crowder and Hamilton (1992a) were the first to apply the EWMA scheme to the normal approximation of ln(S2/σ 20 ) for

monitoring increases in process variance where σ 20 is the in-control process variance. In order to improve the efficiency for
monitoring an increase of the process variance, they reset the EWMA statistic to zero whenever it is below zero. Obviously,
the reset of the smaller EWMA statistic to zero can improve the inertia problem of the EWMA statistic and enhance its ability
at signaling an increase in the process variance. Based on the similar idea used in Shu et al. (2007) for monitoring process
means, Shu and Jiang (2008) proposed truncating ln(S2/σ 20 ) to its approximate in-control mean whenever it is below the
approximate in-control mean. Note that the approximate in-control mean of ln(S2/σ 20 ) is actually negative (see next section
for details) and may remain to be negative when the process variance becomes slightly larger. Thus, when the process is
out of control, Crowder and Hamilton’s (1992a) approach may cause too much resetting of the EWMA statistic due to the
negative value of ln(S2/σ 20 ). In contrast, Shu and Jiang’s (2008) approach only accumulates the positive portion of ln(S

2/σ 20 )
minus its approximate in-control mean at each iteration. Therefore, it could accelerate the detection of an increase in the
process variance, in particular when the increase is small. Besides this, Shu and Jiang (2008) claimed that theirmethod being
better than Crowder and Hamilton’s (1992a) is partially due to the fact that the signal-to-noise (SN) ratio of the statistic they
used is higher than that of the statistic ln(S2/σ 2), which Crowder and Hamilton’s (1992a) chart is based on. However, as
shown in the next section, it is possible that a charting scheme based on a statistic with a lower SN ratio is more powerful
for detecting an increase in the process variance than another scheme based on a different statistic with a higher SN ratio.
In fact, a control chart’s efficiency for detecting an increase or a decrease in the process variance has no connection with the
SN ratio of the statistic used.
In this paper, we propose two one-sided EWMA charts for detecting increases and decreases in process dispersion,

respectively. The upper-sided EWMA chart is based on the inverse standard normal distribution function of a chi squared
distribution function while the lower-sided EWMA chart is established using a normal approximation to the logarithm of
the weighted sum of chi squared random variables. Moreover, we also propose combining the lower-sided and upper-sided
EWMA charts as a two-sided EWMA chart for detecting dispersion increases or decreases simultaneously. It is shown that
the proposed upper-sided EWMA chart is more effective than the counterparts of Crowder and Hamilton (1992a) and Shu
and Jiang (2008) for detecting increases in process dispersion. On the other hand, the proposed lower-sided EWMA chart is
significantlymore powerful than those developed similar to the upper-sided EWMAcharts of Crowder andHamilton (1992a)
and Shu and Jiang (2008) for detecting decreases in process dispersion. Furthermore, the proposed two-sided EWMA chart
also outperforms the two-sided EWMA charts generalized from the upper-sided EWMA charts of Crowder and Hamilton
(1992a) and Shu and Jiang (2008) for detecting overall changes in process dispersion.
The rest of the paper is organized as follows. The proposed one-sided and two-sided EWMA charts are introduced in

the next section. The relationship between the signal-to-noise (SN) ratio of a process change for a control charting scheme
and its detection performance is investigated. Then, we compare the performance of the three proposed charts with the
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two existing charts in terms of both zero-state and steady-state ARL’s. After that, the optimal design of the proposed
upper-sided EWMA chart for monitoring dispersion increases and the counterpart of Shu and Jiang (2008) is discussed.
Finally some concluding remarks are given.

2. The HHW1, HHW2, and HHW-C charts

Suppose that at time t wehave a randomsampleXt1, Xt2, . . . , Xtn fromaprocesswhere each observation follows a normal
distribution N(µt , σ 2t ). Here, we are only interested inmonitoring a change in the process variance. Namely, σ

2
t = σ

2
0 when

t < τ and σ 2t 6= σ 20 when t ≥ τ for some time τ where σ 20 is the in-control process variance. We can assume, without
loss of generality, that µt is equal to 0. Let δt = σt/σ0 and S2t =

∑n
i=1(Xti − X̄t)

2/(n − 1), t = 1, 2, . . ., be respectively
the ratio of process standard deviation and the in-control value and the sample variance based on Xt1, Xt2, . . . , Xtn. Crowder
and Hamilton (1992a) proposed the EWMA chart based on

Qt = max[(1− λ)Qt−1 + λYt , 0], (1)

where 0 < λ ≤ 1 is a smoothing constant, Yt = ln(S2t /σ
2
0 ) and Q0 = 0. It is known that S

2
t /σ

2
0 follows a gamma distribution

with shape parameter α = (n − 1)/2 and scale parameter θ = 2δ2t /(n − 1). Subsequently, Yt has an approximate normal
distribution (see, for example, Lawless (2003)) with mean and variance respectively equal to

µY ≈ ln(δ2t )−
1
n− 1

−
1

3(n− 1)2
+

2
15(n− 1)4

,

and

σ 2Y ≈
2
n− 1

+
2

(n− 1)2
+

4
3(n− 1)3

−
16

15(n− 1)5
. (2)

To detect an increase in the process variance, the EWMA in (1) signals an out-of-control if Qt is greater than

hQ = LQ

√
λ

2− λ
σY ,

where LQ can be determined to achieve a desired ARL0. Similar to (1), if we are interested in detecting a decrease in the
process variance, the EWMA chart can be based on

Q ′t = min[(1− λ)Q
′

t−1 + λYt , 0],

where Q ′0 = 0 and the chart signals an out-of-control if Q
′
t is less than

h′Q = −L
′

Q

√
λ

2− λ
σY ,

where L′Q can be chosen to achieve a desired ARL0. For convenience, the charts proposed by Crowder and Hamilton (1992a)
will be denoted as the CH charts throughout the rest of this paper.
Define the standardized quantity

Zt =
Yt − µY |σt=σ0

σY
, (3)

where µY |σt=σ0 is the approximate in-control mean of Yt . Note that the approximate variance of Yt is a function of n only
and thus any changes in σ 2t will only be reflected in the approximate mean µY of Yt . Denote Z

+

t = max(Zt , 0). If Zt has an
exact standard normal distribution, Barr and Sherrill (1999) showed that E(Z+t ) = 1/

√
2π and σ 2

Z+t
= 1/2 − 1/(2π). As a

consequence, Shu and Jiang (2008) proposed an EWMA chart based on

Wt = λ
(
Z+t −

1
√
2π

)
+ (1− λ)Wt−1, (4)

whereW0 = 0. The chart declares an out-of-control whenWt exceeds the upper control limit

hN = LN

√
λ

2− λ
σZ+t

,

where LN can be chosen to achieve the desired ARL0. Analogously, if our interest centers on detecting a decrease in the
process variance, the EWMA chart can be based on

W ′t = λ
(
Z−t +

1
√
2π

)
+ (1− λ)W ′t−1,
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where Z−t = min(0, Zt) andW ′0 = 0. Subsequently, the lower control limit of the chart is given by

h′N = −L
′

N

√
λ

2− λ
σZ−t

,

where L′N can be determined to achieve the desired ARL0 and σZ−t = σZ+t
. The EWMA charts proposed by Shu and Jiang

(2008) will be denoted as the SJ charts in this paper.
Recall that S2t /σ

2
0 has a gamma distribution with shape parameter α = (n− 1)/2 and scale parameter θ = 2δ

2
t /(n− 1).

It is natural to directly obtain the EWMA statistic

Vt = λ
S2t
σ 20
+ (1− λ)Vt−1 =

t∑
i=1

λ(1− λ)t−i
S2i
σ 20
+ (1− λ)tV0,

where V0 = 1. Due to the independency of S2i , i = 1, 2, . . . , t , we have, using the two-moment chi squared approximation
of Box (1954),

Vt − (1− λ)tV0 =
t∑
i=1

λ(1− λ)t−i
S2i
σ 20
≈ gamma(β1, β2),

where

β1 =

(n− 1)
[
t∑
i=1
λ(1− λ)t−i

]2
2
t∑
i=1
[λ(1− λ)t−i]2

=
(n− 1)(2− λ)[1− (1− λ)t ]2

2λ[1− (1− λ)2t ]
,

and

β2 =

2δ2t
t∑
i=1
[λ(1− λ)t−i]2

(n− 1)
t∑
i=1
λ(1− λ)t−i

=
2λ[1− (1− λ)2t ]

(n− 1)(2− λ)[1− (1− λ)t ]

if σt = · · · = σ1. Subsequently, taking the logarithm of Vt − (1− λ)tV0, we obtain

ln[Vt − (1− λ)tV0] ≈ N(µR, σ 2R )

where

µR = ln(β1β2)−
1
2β1
−

1
12β21

+
1

120β41
,

and

σ 2R =
1
β1
+
1
2β21
+
1
6β31
−

1
30β51

.

The difference between this approach and Shu and Jiang’s is that at time t , this approach has only employed two
approximations, the Box’s (1954) two-moment chi squared approximation to obtain a gamma distribution and the normal
approximation to the logarithm of the gamma distribution, but Shu and Jiang’s approach has used t normal approximations,
each approximating the logarithm of a gamma distribution. The distribution of ln(S2i /σ

2
0 ) is actually skewed to the left with

a negativemeanwhen the process is in control andmay still be negative if the process variance slightly increases. In deriving
the EWMA statisticsWt andW ′t for the SJ charts, both statistics involve the addition of t truncated distributions, Z

+

t and Z
−

t ,
i = 1, 2, . . . , t , respectively. Although it may expect a high efficiency of themonitoring statisticWt for detecting an increase
in the process variance, it turns out that the ability of the monitoring statistic W ′t for detecting a decrease in the process
variance has been dampened downdramatically. In contrast, the distribution ofVt−(1−λ)tV0, which is a linear combination
of t independent chi squared random variables, is approximated by a gamma distribution, and then the logarithm of this
gamma distribution is further approximated by a normal distribution. This results in ln[Vt − (1 − λ)tV0] having a nearly
normal distribution. Consequently, the control limits for ln[Vt− (1−λ)tV0] is more symmetrical and the ability of detecting
an increase or a decrease in the process variance would be roughly the same. On the basis of ln[Vt − (1− λ)tV0], we define
the standardized monitoring statistic as

Ut =
ln[Vt − (1− λ)tV0] − µR

σR
. (5)

Subsequently, the one-sided upper control limit LU or lower control limit−LU of Ut can be chosen, respectively, to achieve
the desired ARL0. These control charts will be referred to as the HHW1 charts in the paper.
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Note that unlike the CH and SJ chartswhere themonitoring statistics use a constant (independent of t) standard deviation
to develop the control limits, in the derivation of the control limits for the HHW1 chart, the monitoring statistic Ut equals
ln[Vt − (1 − λ)tV0] − µR divided by the standard deviation σR, which is implicitly a function of t . Montgomery (2008)
strongly recommended using a variable standard deviation in establishing the control limits for an EWMA chart because it
will greatly improve the performance of the control chart in detecting an off-target process immediately after the EWMA
is started up. The use of a variable standard deviation turns out to be an advantage of the HHW1 chart over the CH and SJ
charts. From the definition of Ut in (5), it can be shown that Ut+t0 and Ut , t0 ≥ 1, have the same distribution if we regard
Vt0 as the initial value for Vt+t0 as is V0 for Vt . As a result, the HHW1 chart has the steady-state ARL, denoted by S-ARL, the
same as the zero-state ARL, denoted by Z-ARL, at any value of σ . The Z-ARL is computed assuming a process change occurs
at the initial observation of a control chart. The S-ARL is often considered to remove the effect of the initial observation on
the chart performance. The S-ARL refers to the ARL computed when the monitoring statistic has arrived steady state before
a process change occurred. In contrast, due to the constant standard deviation used in developing the control limits for CH
and SJ charts, there may exist notable difference of the Z-ARL and S-ARL at any value of σ . More discussions about this are
included in the section of performance comparison.
An alternative way to detect a change in the process variance is to define the EWMA monitoring statistic in terms of an

exact normal transformation of S2i /σ
2
0 . Let F(·) be the distribution function of a chi squared random variable with n − 1

degrees of freedom. It is known that when the process is in control, the statistic Mt = Φ−1{F [(n − 1)S2t /σ
2
0 ]} has the

standard normal distribution, where Φ is the distribution function of the standard normal distribution. Based on this, the
EWMAmonitoring statistic is defined by

Ht = λMt + (1− λ)Ht−1,

where H0 = 0. It can be shown that Ht has a normal distribution with mean 0 and variance λ[1− (1− λ)2t ]/(2− λ)when
the process is in control. Since a change in the process variance can result in both changes in the mean and variance ofMt ,
respectively, it is plausible to use the standardized statistic

Dt =
Ht√

λ
2−λ [1− (1− λ)

2t ]

(6)

to monitor the process variance. The two one-sided control charts, which will be denoted as the HHW2 charts in the paper,
can be respectively defined by the upper control limit LD and lower control limit−LD to achieve the desired ARL0.
Note that Quesenberry (1995) and Chen et al. (2001) also proposed using the transformationMt to derive EWMA charts.

However, unlike the right hand side of (6) using a variable standard deviation in the denominator, they used constant
standard deviations to establish the control limits. As a result, their EWMA charts may have the Z-ARL notably different
from the S-ARL due to the effect of initial value.
The CH and SJ charts are developed respectively based on Yt = ln(S2t /σ

2
0 ) and Z

+

t . On the other hand, the HHW1 and
HHW2 charts are established based on S2t /σ

2
0 and Mt , respectively. Shu and Jiang (2008) compared the SN ratios of Yt and

Z+t when the process variance increases, and they concluded that the higher SN ratio of Z
+

t than Yt may be the reason why
the SJ chart has better performance than the CH chart. In the following, we shall compare the SN ratios of Yt , Z+t , S2t /σ

2
0 , and

Mt when there is an increase in the process variance from σ 20 to σ
2. The SN ratio of Yt is approximated as

SN(Yt) =
Yt − µY |σt=σo

σY
=
ln(σ 2t /σ

2
0 )

σY
≡ γt .

The mean of Z+t , when Zt ∼ N(γt , 1), is

E(Z+t ) =
1
√
2π
e−γ

2
t /2 + γtΦ(γt).

Consequently, the SN ratio of Z+t can be calculated approximately as

SN(Z+t ) =
E(Z+t )− E(Z

+

t |σt = σ0)

σZ+t

=
(e−γ

2
t /2 − 1)/

√
2π + γtΦ(γt)

√
1/2− 1/(2π)

.

The SN ratio of S2t /σ
2
0 is

SN(
S2t
σ 20
) =

E(S2t /σ
2
0 )− E(S

2
t /σ

2
0 |σt = σ0)√

Var(S2t /σ 20 )
=

σ 2t /σ
2
0 − 1

√
2/(n− 1)σ 2t /σ 20

=
δ2t − 1

√
2/(n− 1)δ2t

.

Finally, the SN ratio ofMt = Φ−1{F [(n− 1)S2t /σ
2
0 ]} is

SN(Mt) =
E(Mt)− E(Mt |σt = σ0)

√
Var(Mt)

=
E(Φ−1{F [(n− 1)S2t /σ

2
0 ]})√

Var(Φ−1{F [(n− 1)S2t /σ 20 ]})
.
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Fig. 1. The SN ratios of Yt , Z+t , S2t /σ
2
0 , andMt when the process variance increases.

Fig. 2. The SN ratios of Yt , Z+t , S2t /σ
2
0 , andMt when the process variance decreases.

In Fig. 1, we plot the SN ratios of Yt , Z+t , S2t /σ
2
0 , andMt for n = 5 when there is an increase in the process variance. Although

Z+t has the highest SN ratio among the four competitors, it is shown in the next section that the HHW2 chart is more
powerful than the SJ chart for detecting an increase in the process variance. Fig. 2 plots the absolute values of the SN ratios
of Yt , Z+t , S2t /σ

2
0 , and Mt for n = 5 when there is a decrease in the process variance. It is observed that the CH chart has a

higher absolute value of SN ratio than that of the SJ chart despite shown below that the SJ chart gives much better results
than the CH chart for detecting a decrease in the process variance. From these two figures, we conclude that the detection
performance of a control chart may not have any connection with its SN ratio.

3. Performance comparison

In this section, we compare the performance of the CH, SJ, HHW1, and HHW2 charts in terms of ARL. The comparisons
are based on the rational subgroup size of n = 5. For other different sizes, the results are qualitatively the same and hence
are omitted.
As described in Shu and Jiang (2008), both the monitoring statistics Qt and Wt of the upper-sided CH and SJ charts

have a bounded in-control region. Thus discrete Markov chains can be respectively developed to approximate the run-
length distributions of the upper-sided CH and SJ charts. On the contrary, the monitoring statistic Ut(Dt) of the upper-
sided HHW1(HHW2) chart has an unbounded in-control region due to no resetting being used in deriving Ut(Dt). As a
result, it is cumbersome to obtain a discretizedMarkov chain to approximate the run-length distribution of the upper-sided
HHW1(HHW2) chart. Moreover, to express the Z-ARL of the upper-sided HHW1 chart as the solution to an integral equation,
one can follow the approach recommended by Crowder and Hamilton (1992b). Let δ2 = σ 2/σ 20 and L(δ

2) be the Z-ARL of
the upper-sided HHW1 chart starting with V0 = δ2. Then, it is easy to show that

L(δ2) = 1 · Pr(U1 > LU)+
∫
R
{1+ L[λg + (1− λ)δ2]}f (g)dg,
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Fig. 3. The Z-ARL1 ’s for the CH, SJ, HHW1, and HHW2 charts when the process variance increases.

where R = {g : [ln(λg) − µR]/σR ≤ LU } and f (g) is the pdf of the gamma random variable G = S21/σ
2
0 = e

Y1 with shape
parameter (n− 1)/2 and scale parameter 2δ2/(n− 1). Due to the fact that

{U1 > LU } =
{
ln[V1 − (1− λ)δ2] − µR

σR
> LU

}
=

{
G >

1
λ
eµR+σRLU

}
,

then

L(δ2) = Pr

(
G >

1
λ
eµR+σRLU

)
+

∫ 1
λ
eµR+σRLU

0
{1+ L[λg + (1− λ)δ2]}f (g)dg

= 1− FG

(
1
λ
eµR+σRLU

)
+

∫ LU

−∞

{1+ L[eµR+σRh + (1− λ)δ2]} · f
(
1
λ
eµR+σRh

)
σR

λ
eµR+σRhdh,

where FG(·) is the distribution function of G. The Z-ARL of the upper-sided HHW1 chart, L(δ2), can be approximately
computed using the above integral equation. However, using numerical methods for solving integral equations of this
type is difficult because the integral involves integration on the unbounded interval (−∞, LU). Due to the aforementioned
reasons, in the following we use statistical simulations, which usually producemore accurate results than theMarkov chain
methodology and the integral equation approach, to compute the Z-ARL’s of all control charts being compared. All simulation
results in the paper use 200,000 repetitions.
Table 1 tabulates the Z-ARL’s for the four competing charts for n = 5 and several different values of λ (≤ 0.3) when

the process variance increases. All four charts are set to have an Z-ARL0 of 200. It is evident that among the four control
charts, the HHW2 chart has the best performance in detecting an increase in the process variance. For a given value of λ, the
Z-ARL1’s of the HHW2 are uniformly smaller than those of the other three charts. The difference in the Z-ARL1’s among the
four charts becomes smaller as λ gets closer to 0.3. In Fig. 3, we plot the Z-ARL1’s of the four charts for λ = 0.05, 0.1, 0.2
and 0.3. It can be observed that the smaller λ is, the more prominently the HHW2 chart outperforms the other three charts.
Furthermore, for small λ values, the superiority of the HHW2 chart is more significantly when the amount of the increase
in σ is small.
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Table 1
The zero-state ARL’s for the one-sided CH, SJ, HHW1, and HHW2 charts when the process variance increases (( ) = standard error).

λ = 0.05 CH SJ HHW1 HHW2 λ = 0.1 CH SJ HHW1 HHW2

σ/σ0 L = 1.055 1.568 1.828 1.872 σ/σ0 L = 1.303 1.943 2.079 2.139

1.0 200.33 200.75 200.92 199.57 1.0 200.02 200.36 199.51 200.35
(0.44) (0.45) (0.47) (0.49) (0.44) (0.44) (0.44) (0.46)

1.1 43.24 32.26 28.89 27.28 1.1 44.26 35.15 34.32 32.05
(0.09) (0.06) (0.06) (0.06) (0.09) (0.07) (0.07) (0.07)

1.2 18.09 14.43 11.69 10.78 1.2 18.23 14.96 14.10 12.69
(0.03) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03)

1.3 10.77 9.17 6.85 6.20 1.3 10.56 9.09 8.20 7.21
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

1.4 7.63 6.73 4.75 4.24 1.4 7.35 6.53 5.65 4.89
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.5 5.98 5.38 3.62 3.22 1.5 5.68 5.13 4.28 3.68
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.6 4.96 4.51 2.94 2.61 1.6 4.68 4.27 3.46 2.95
(0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00)

1.7 4.29 3.92 2.51 2.23 1.7 4.02 3.69 2.91 2.49
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.8 3.80 3.50 2.20 1.96 1.8 3.56 3.27 2.53 2.16
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.9 3.44 3.17 1.96 1.76 1.9 3.22 2.96 2.25 1.93
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2.0 3.18 2.93 1.80 1.62 2.0 2.95 2.72 2.03 1.76
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ = 0.2 CH SJ HHW1 HHW2 λ = 0.3 CH SJ HHW1 HHW2

σ/σ0 L = 1.513 2.270 2.253 2.355 σ/σ0 L = 1.598 2.433 2.302 2.447

1.0 200.64 199.48 199.43 200.65 1.0 199.40 199.67 200.22 199.45
(0.44) (0.44) (0.44) (0.45) (0.44) (0.44) (0.44) (0.45)

1.1 46.63 39.73 41.18 37.87 1.1 48.48 43.45 46.14 41.79
(0.10) (0.08) (0.08) (0.08) (0.10) (0.09) (0.10) (0.09)

1.2 18.79 16.05 16.66 14.70 1.2 19.52 17.25 18.65 16.20
(0.04) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03)

1.3 10.54 9.21 9.45 8.16 1.3 10.67 9.56 10.35 8.82
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

1.4 7.16 6.40 6.45 5.49 1.4 7.09 6.43 6.90 5.81
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.5 5.41 4.89 4.83 4.07 1.5 5.24 4.80 5.11 4.26
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.6 4.38 3.99 3.86 3.24 1.6 4.20 3.88 4.06 3.38
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.7 3.73 3.41 3.25 2.71 1.7 3.53 3.26 3.39 2.81
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.8 3.27 3.00 2.81 2.34 1.8 3.06 2.83 2.91 2.42
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.9 2.92 2.69 2.48 2.08 1.9 2.73 2.53 2.57 2.14
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2.0 2.67 2.45 2.24 1.88 2.0 2.47 2.30 2.32 1.93
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 2 presents the Z-ARL’s for the four competing charts with the same setups as in Table 1 when the process variance
decreases. It can be concluded that for a given value of λ, the Z-ARL1’s of the HHW1 are uniformly smaller than those
of the other three charts. The performance improvement of the HHW1 chart is profound especially when the λ value is
small. Moreover, for small λ values, the difference in the Z-ARL1’s between the HHW1 and the other three charts becomes
significant when the degree of decrease in σ is small. All the aforementioned summary can be easily seen from Fig. 4 which
plots the Z-ARL1’s of the four charts for λ = 0.05, 0.1, 0.2 and 0.3.
In Table 3, the S-ARL’s are computed for the four competing charts when there is an increase in the process variance. The

S-ARL’s are obtained when the monitoring statistics are processed for 25 in-control observations before the run lengths are
accumulated to signal. Comparing Table 3 with Table 1, it is observed that for the CH chart, the S-ARL1 is notably smaller
than the Z-ARL1 when the process variance increases, and the difference is more significant for the smaller λ. As for the SJ
chart, the S-ARL1 is larger than the Z-ARL1 at an increase in the process variance when λ = 0.05 and 0.1, but the direction
of the discrepancy is not clear and they are not significantly different as λ ≥ 0.2. In contrast, as we have mentioned in the
previous section, the HHW1 andHHW2 charts have the same S-ARL1 as the Z-ARL1 when the process variance increases. The
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Fig. 4. The Z-ARL1 ’s for the CH, SJ, HHW1, and HHW2 charts when the process variance decreases.

numerical difference between the S-ARL1’s and Z-ARL1’s of the HHW1 or HHW2 chart at an increase in the process variance
is purely due to simulation error. Additionally, we have also simulated the S-ARL1’s for the four control charts when there
is a decrease in the process variance. Since the conclusions are similar to those in the situation that the process variance
increase, they are omitted.
Asmentioned earlier, theHHW2 chart gives the best results among the four charts for detecting an increase in the process

variance. On the other hand, the HHW1 chart is much more powerful than the other three charts for detecting a decrease in
the process variance. Intuitively, instead of using either a two-sided HHW1 chart or a two-sided HHW2 chart, combining a
lower-sidedHHW1chartwith anupper-sidedHHW2chartmay result in better performance formonitoring process variance
if we do not know that there is an increase or a decrease in the process variance. In this paper, the two-sided control chart
consisting of a lower-sided HHW1 chart and an upper-sided HHW2 chart will be denoted as HHW-C chart.
Table 4 summarizes the Z-ARL’s for the two-sided CH, SJ, HHW1, HHW2, and HHW-C charts for n = 5 and λ = 0.05,

0.1, 0.2, 0.3 when the process variance changes. For each of the five two-sided control charts, we use 200,000 Monte Carlo
simulations to find the individual L value for each of the two one-sided charts with equal individual Z-ARL0 so that the
overall Z-ARL0 of the two-sided chart is approximately equal to 200. According to the results in Table 4, when the process
variance decreases, the Z-ARL1’s of the HHW-C chart are practically equivalent to those of the HHW1 chart which has the
best performance for detecting a decrease in the process variance. On the other hand, when the process variance increases,
the results of the HHW-C chart are not appreciably different from those of the HHW2 chart which outperforms the other
charts for detecting an increase in the process variance. Overall, the HHW-C chart is recommended for use when one does
not know whether there is an increase or a decrease in the process variance. Furthermore, it is easy to see that the smaller
λ the better that the HHW-C chart performs.

4. Design of the control charts

The design of the control charts studied here involves determining the choice of λ and L for a fixed sample size n. The
design approach recommended by Lucas and Saccucci (1990) and Crowder and Hamilton (1992a) will be followed here. The
approach involves the joint choice of λ and L that yields a desired Z-ARL0 at the nominal variability (σ = σ0) and also yields
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Table 2
The zero-state ARL’s for the one-sided CH, SJ, HHW1, and HHW2 charts when the process variance decreases (( ) = standard error).

λ = 0.05 CH SJ HHW1 HHW2 λ = 0.1 CH SJ HHW1 HHW2

σ/σ0 L = 1.086 2.209 1.889 1.872 σ/σ0 L = 1.517 2.843 2.145 2.140

1.00 199.80 199.10 200.97 199.60 1.00 199.38 200.23 200.08 199.95
(0.45) (0.45) (0.52) (0.49) (0.45) (0.44) (0.49) (0.46)

0.95 170.45 95.99 57.37 64.80 0.95 169.87 108.56 68.33 78.08
(0.38) (0.21) (0.14) (0.15) (0.38) (0.23) (0.16) (0.17)

0.90 144.19 51.43 24.56 29.10 0.90 144.25 61.77 30.33 37.34
(0.32) (0.10) (0.05) (0.06) (0.32) (0.13) (0.07) (0.08)

0.85 120.73 30.77 13.51 16.34 0.85 120.89 36.83 16.51 20.91
(0.27) (0.06) (0.03) (0.03) (0.27) (0.07) (0.03) (0.04)

0.80 100.93 20.06 8.59 10.47 0.80 100.65 23.41 10.32 13.22
(0.23) (0.03) (0.02) (0.02) (0.22) (0.04) (0.02) (0.02)

0.75 83.51 13.95 5.96 7.26 0.75 83.60 15.69 7.10 9.10
(0.19) (0.02) (0.01) (0.01) (0.19) (0.03) (0.01) (0.01)

0.70 68.25 10.25 4.42 5.35 0.70 67.95 11.07 5.19 6.62
(0.15) (0.01) (0.01) (0.01) (0.15) (0.02) (0.01) (0.01)

0.65 54.86 7.83 3.42 4.12 0.65 54.67 8.17 3.97 5.04
(0.12) (0.01) (0.00) (0.01) (0.12) (0.01) (0.01) (0.01)

0.60 43.50 6.16 2.74 3.26 0.60 43.66 6.28 3.16 3.97
(0.10) (0.01) (0.00) (0.00) (0.10) (0.01) (0.00) (0.00)

0.55 33.96 4.96 2.26 2.65 0.55 34.03 4.98 2.57 3.21
(0.08) (0.00) (0.00) (0.00) (0.08) (0.01) (0.00) (0.00)

0.50 25.82 4.09 1.90 2.20 0.50 25.92 4.03 2.14 2.64
(0.06) (0.00) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00)

λ = 0.2 CH SJ HHW1 HHW2 λ = 0.3 CH SJ HHW1 HHW2

σ/σ0 L = 2.097 3.525 2.346 2.354 σ/σ0 L = 2.500 3.959 2.434 2.447

1.00 200.53 200.64 199.80 200.24 1.00 199.74 200.88 200.07 199.36
(0.45) (0.44) (0.47) (0.45) (0.45) (0.45) (0.46) (0.45)

0.95 170.58 124.67 83.21 96.26 0.95 169.65 135.65 94.35 109.05
(0.38) (0.27) (0.19) (0.21) (0.38) (0.30) (0.22) (0.24)

0.90 144.05 77.53 39.29 50.10 0.90 143.54 90.92 47.82 61.98
(0.32) (0.17) (0.09) (0.11) (0.32) (0.20) (0.11) (0.13)

0.85 121.77 48.45 21.13 28.48 0.85 119.83 59.59 26.13 36.41
(0.27) (0.10) (0.04) (0.06) (0.27) (0.13) (0.06) (0.08)

0.80 101.61 30.73 12.76 17.49 0.80 100.22 39.10 15.54 22.58
(0.23) (0.06) (0.02) (0.03) (0.22) (0.08) (0.03) (0.04)

0.75 83.59 20.07 8.47 11.65 0.75 82.81 25.71 9.96 14.68
(0.19) (0.04) (0.01) (0.02) (0.19) (0.05) (0.02) (0.03)

0.70 68.43 13.53 6.02 8.23 0.70 67.56 17.08 6.86 10.05
(0.15) (0.02) (0.01) (0.01) (0.15) (0.03) (0.01) (0.02)

0.65 54.97 9.53 4.54 6.14 0.65 54.57 11.64 5.03 7.24
(0.12) (0.01) (0.01) (0.01) (0.12) (0.02) (0.01) (0.01)

0.60 44.07 6.97 3.56 4.76 0.60 43.36 8.17 3.85 5.43
(0.10) (0.01) (0.00) (0.01) (0.10) (0.01) (0.01) (0.01)

0.55 34.18 5.27 2.86 3.78 0.55 34.09 5.96 3.06 4.24
(0.08) (0.01) (0.00) (0.00) (0.08) (0.01) (0.00) (0.01)

0.50 26.25 4.14 2.37 3.08 0.50 26.29 4.49 2.49 3.38
(0.06) (0.00) (0.00) (0.00) (0.06) (0.01) (0.00) (0.00)

the smallest Z-ARL1 for a specified change in the process standard deviation. For simplicity, here we only study the design
for specific increases in the process standard deviation, and that for specific decreases in the process standard deviation can
be similarly dealt with.
Shu and Jiang (2008) used a numerical search method through the Markov chain approximation to find the optimal

values of λ and L for the SJ charts for the sample sizes of n = 3, 5, 8, 15. For a target out-of-control σ(>σ0) and a fixed
sample size n, they found the corresponding values of L with a wide range values of λ (λ = 0.01, 0.02, . . . , 1.0) to yield
the desired Z-ARL0. The pair (λ, L) will be considered to be optimal if among all the possible combinations of λ and L, it
produces the smallest Z-ARL1 at the target out-of-control σ . Following the same numerical search method, we use Monte
Carlo simulations to find the optimal parameters for the HHW2 charts for the sample size of n = 5 and 15 (the results for
n = 3 and 8 are omitted). Table 5 compares the results with those of the SJ chart.
As can be seen from Table 5, for a fixed Z-ARL0, unlike the SJ chart whose optimal λ value increases as the target out-of-

control σ becomes larger, the optimal λ for the HHW2 chart remains at the value of 0.01 for all the target out-of-control
σ ’s considered here. The optimal λ remaining at the same value is an advantage of the HHW2 chart which can help one
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Table 3
The steady-state ARL’s for the one-sided CH, SJ, HHW1, and HHW2 charts when the process variance increases (( ) = standard error).

λ = 0.05 CH SJ HHW1 HHW2 λ = 0.1 CH SJ HHW1 HHW2

σ/σ0 L = 1.055 1.568 1.828 1.872 σ/σ0 L = 1.303 1.943 2.079 2.139

1.0 195.19 201.75 200.66 199.68 1.0 196.54 200.03 199.69 200.12
(0.43) (0.45) (0.47) (0.49) (0.44) (0.44) (0.44) (0.46)

1.1 40.72 33.75 28.66 27.02 1.1 42.34 35.58 34.52 32.11
(0.09) (0.06) (0.06) (0.06) (0.09) (0.07) (0.07) (0.07)

1.2 16.73 15.65 11.76 10.82 1.2 17.10 15.35 14.09 12.72
(0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

1.3 9.76 10.03 6.85 6.18 1.3 9.72 9.43 8.20 7.22
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

1.4 6.84 7.42 4.73 4.23 1.4 6.69 6.83 5.64 4.90
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.5 5.34 5.97 3.62 3.22 1.5 5.12 5.39 4.28 3.67
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.6 4.40 5.01 2.93 2.60 1.6 4.21 4.51 3.46 2.96
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

1.7 3.80 4.37 2.50 2.22 1.7 3.60 3.89 2.91 2.48
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.8 3.37 3.89 2.19 1.95 1.8 3.18 3.46 2.53 2.16
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.9 3.05 3.52 1.96 1.76 1.9 2.87 3.13 2.25 1.93
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2.0 2.81 3.25 1.80 1.62 2.0 2.64 2.88 2.05 1.77
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ = 0.2 CH SJ HHW1 HHW2 λ = 0.3 CH SJ HHW1 HHW2

σ/σ0 L = 1.513 2.270 2.253 2.355 σ/σ0 L = 1.598 2.433 2.302 2.447

1.0 197.72 198.46 199.44 200.75 1.0 198.16 199.61 200.47 199.95
(0.44) (0.44) (0.44) (0.45) (0.44) (0.44) (0.44) (0.45)

1.1 45.15 39.32 41.03 37.62 1.1 47.54 43.17 46.36 41.80
(0.10) (0.08) (0.08) (0.08) (0.10) (0.09) (0.10) (0.09)

1.2 17.93 15.97 16.62 14.65 1.2 18.72 17.10 18.60 16.14
(0.04) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03)

1.3 9.84 9.23 9.43 8.15 1.3 10.12 9.52 10.33 8.81
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

1.4 6.60 6.42 6.43 5.46 1.4 6.64 6.42 6.88 5.81
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.5 4.95 4.95 4.83 4.07 1.5 4.88 4.82 5.11 4.26
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.6 4.00 4.06 3.87 3.24 1.6 3.88 3.89 4.06 3.38
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.7 3.39 3.48 3.25 2.71 1.7 3.25 3.30 3.39 2.81
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.8 2.95 3.05 2.80 2.34 1.8 2.82 2.89 2.92 2.42
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.9 2.64 2.75 2.48 2.08 1.9 2.50 2.57 2.57 2.14
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2.0 2.41 2.52 2.24 1.88 2.0 2.27 2.34 2.31 1.94
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

to easily spot the λ value for practical use because in reality we do not have any knowledge about the value of the target
out-of-control σ . It is also seen from Table 5 that the minimum Z-ARL1’s for the optimal HHW2 chart are uniformly smaller
than those for the optimal SJ chart. Moreover, the performance of both the optimal SJ and HHW2 charts improves as the
sample size n becomes larger.
Two points about the optimal parameters λ and L discussed above deserve special attention. First, the numerical method

used above can only find the approximate optimal values of λ and L because the true optimal λ may occur at the value
different from the prespecified 0.01, . . . , 0.99, 1. For example, Table 6 presents the Z-ARL’s for the SJ chart based on
(λ, L) = (0.001, 0.0345), n = 5 and Z-ARL0 = 200. These Z-ARL1’s are much smaller than those corresponding to the
approximate optimal parameters for the SJ chart with n = 5 and Z-ARL0 = 200 presented in Table 5. Consequently, the
approximate optimal parameters in Table 5 are not the true optimal parameters. Secondly, it may bemore reasonable to find
the optimal value of λ from a subinterval away from 0, say [0.05, 1], instead of (0, 1] practically. For a fixed Z-ARL0, smaller λ
gives smaller Z-ARL1, but, when too small a λ is used, the standard deviation of the run-length distribution associated with
this Z-ARL0 is usually very large for a control chart. For example, for the HHW2 chart, when λ = 0.01 the standard deviation
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Table 4
The zero-state ARL’s for the two-sided CH, SJ, HHW1, HHW2, and HHW-C charts when the process variance changes.

λ = 0.05 CH SJ HHW1 HHW2 HHW-C

L1 1.225 2.812 2.290 2.277 2.302
L2 1.219 1.948 2.233 2.277 2.292

σ/σ0 Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e.

0.50 49.56 0.11 5.10 0.00 2.31 0.00 2.90 0.00 2.32 0.00
0.55 66.21 0.15 6.25 0.01 2.79 0.00 3.55 0.00 2.80 0.00
0.60 85.16 0.19 7.82 0.01 3.45 0.00 4.42 0.01 3.48 0.00
0.65 108.00 0.24 10.07 0.01 4.39 0.01 5.65 0.01 4.42 0.01
0.70 135.06 0.30 13.46 0.02 5.80 0.01 7.48 0.01 5.84 0.01
0.75 165.87 0.37 18.81 0.03 8.03 0.01 10.33 0.02 8.09 0.01
0.80 200.16 0.45 28.06 0.04 11.91 0.02 15.24 0.02 12.01 0.02
0.85 240.82 0.54 45.86 0.08 19.53 0.04 24.74 0.04 19.66 0.04
0.90 280.24 0.63 83.94 0.17 38.33 0.08 47.30 0.09 38.52 0.08
0.95 282.08 0.63 165.19 0.35 97.57 0.23 112.41 0.25 97.60 0.23
1.00 200.69 0.44 199.89 0.44 199.66 0.49 200.64 0.48 199.98 0.51
1.10 57.33 0.12 45.44 0.08 43.50 0.09 41.53 0.09 41.18 0.09
1.20 22.73 0.04 18.97 0.03 16.63 0.03 15.18 0.03 15.11 0.03
1.30 12.93 0.02 11.59 0.01 9.43 0.02 8.34 0.02 8.33 0.02
1.40 8.95 0.01 8.35 0.01 6.37 0.01 5.49 0.01 5.49 0.01
1.50 6.93 0.01 6.61 0.01 4.80 0.01 4.07 0.01 4.08 0.01
1.60 5.72 0.01 5.52 0.01 3.85 0.01 3.23 0.01 3.23 0.01
1.70 4.91 0.00 4.75 0.00 3.21 0.00 2.68 0.00 2.69 0.00
1.80 4.34 0.00 4.21 0.00 2.78 0.00 2.31 0.00 2.31 0.00
1.90 3.91 0.00 3.80 0.00 2.45 0.00 2.05 0.00 2.05 0.00
2.00 3.59 0.00 3.49 0.00 2.22 0.00 1.85 0.00 1.86 0.00

λ = 0.1 CH SJ HHW1 HHW2 HHW-C

L1 1.712 3.434 2.490 2.479 2.497
L2 1.476 2.281 2.413 2.479 2.490

σ/σ0 Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e.

0.50 49.99 0.11 4.86 0.00 2.52 0.00 3.30 0.00 2.53 0.00
0.55 66.42 0.15 6.09 0.01 3.08 0.00 4.06 0.00 3.09 0.00
0.60 85.64 0.19 7.81 0.01 3.83 0.00 5.08 0.01 3.85 0.00
0.65 107.76 0.24 10.42 0.01 4.92 0.01 6.55 0.01 4.94 0.01
0.70 134.63 0.30 14.55 0.02 6.55 0.01 8.73 0.01 6.58 0.01
0.75 164.78 0.37 21.51 0.04 9.17 0.01 12.23 0.02 9.22 0.01
0.80 201.14 0.45 34.05 0.06 13.88 0.02 18.49 0.03 13.95 0.02
0.85 240.43 0.54 57.97 0.12 23.55 0.05 31.14 0.06 23.70 0.05
0.90 277.76 0.62 105.29 0.22 47.78 0.10 60.74 0.13 48.01 0.10
0.95 276.23 0.62 186.78 0.41 116.48 0.27 134.52 0.30 117.17 0.27
1.00 199.59 0.44 200.37 0.44 199.77 0.46 199.72 0.46 200.02 0.47
1.10 59.91 0.12 50.04 0.10 51.62 0.11 48.06 0.10 48.08 0.11
1.20 23.25 0.04 19.37 0.03 19.17 0.03 17.20 0.03 17.17 0.03
1.30 12.83 0.02 11.22 0.02 10.71 0.02 9.31 0.02 9.30 0.02
1.40 8.65 0.01 7.84 0.01 7.19 0.01 6.11 0.01 6.12 0.01
1.50 6.56 0.01 6.06 0.01 5.37 0.01 4.47 0.01 4.48 0.01
1.60 5.35 0.01 4.99 0.01 4.28 0.01 3.51 0.01 3.52 0.01
1.70 4.56 0.00 4.29 0.00 3.58 0.00 2.92 0.00 2.92 0.00
1.80 4.00 0.00 3.78 0.00 3.08 0.00 2.50 0.00 2.50 0.00
1.90 3.60 0.00 3.41 0.00 2.71 0.00 2.20 0.00 2.20 0.00
2.00 3.29 0.00 3.12 0.00 2.43 0.00 1.98 0.00 1.98 0.00

λ = 0.2 CH SJ HHW1 HHW2 HHW-C

L1 2.362 4.134 2.649 2.644 2.654
L2 1.680 2.576 2.526 2.644 2.651

σ/σ0 Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e.

0.50 50.47 0.11 5.03 0.01 2.74 0.00 3.74 0.00 2.75 0.00
0.55 66.63 0.15 6.59 0.01 3.36 0.00 4.66 0.01 3.37 0.00
0.60 85.76 0.19 9.00 0.01 4.26 0.01 5.96 0.01 4.27 0.01
0.65 107.54 0.24 12.80 0.02 5.55 0.01 7.87 0.01 5.57 0.01
0.70 133.49 0.30 19.13 0.03 7.61 0.01 10.93 0.02 7.64 0.01
0.75 165.20 0.37 30.18 0.06 11.11 0.02 16.17 0.03 11.16 0.02

(continued on next page)
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Table 4 (continued)

0.80 200.12 0.45 49.32 0.10 17.80 0.03 25.83 0.05 17.90 0.03
0.85 239.03 0.54 82.89 0.18 31.89 0.07 45.09 0.09 32.10 0.07
0.90 273.64 0.61 139.87 0.30 65.23 0.15 86.24 0.19 65.78 0.15
0.95 270.76 0.60 208.95 0.46 139.60 0.32 163.63 0.36 141.57 0.33
1.00 199.49 0.44 200.19 0.44 199.41 0.46 199.73 0.45 199.85 0.46
1.10 64.17 0.14 57.76 0.12 63.30 0.13 56.94 0.12 57.30 0.13
1.20 24.62 0.05 21.31 0.04 22.84 0.04 19.92 0.04 19.90 0.04
1.30 13.04 0.02 11.50 0.02 12.21 0.02 10.39 0.02 10.38 0.02
1.40 8.47 0.01 7.64 0.01 8.00 0.01 6.68 0.01 6.68 0.01
1.50 6.25 0.01 5.72 0.01 5.87 0.01 4.83 0.01 4.83 0.01
1.60 4.99 0.01 4.61 0.01 4.63 0.01 3.78 0.01 3.78 0.01
1.70 4.21 0.01 3.91 0.00 3.86 0.01 3.11 0.00 3.12 0.00
1.80 3.66 0.00 3.41 0.00 3.30 0.00 2.66 0.00 2.66 0.00
1.90 3.26 0.00 3.05 0.00 2.90 0.00 2.33 0.00 2.33 0.00
2.00 2.96 0.00 2.77 0.00 2.60 0.00 2.09 0.00 2.09 0.00

λ = 0.3 CH SJ HHW1 HHW2 HHW-C

L1 2.818 4.599 2.718 2.718 2.722
L2 1.758 2.716 2.540 2.718 2.723

σ/σ0 Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e. Z-ARL s.e.

0.50 50.89 0.11 5.70 0.01 2.88 0.00 4.14 0.00 2.89 0.00
0.55 66.23 0.15 7.86 0.01 3.60 0.00 5.28 0.01 3.60 0.00
0.60 85.30 0.19 11.36 0.02 4.65 0.01 7.01 0.01 4.66 0.01
0.65 107.05 0.24 17.07 0.03 6.26 0.01 9.70 0.02 6.27 0.01
0.70 133.04 0.30 26.54 0.05 8.93 0.02 14.13 0.02 8.96 0.02
0.75 164.19 0.37 42.31 0.09 13.66 0.03 21.84 0.04 13.72 0.03
0.80 198.08 0.44 67.52 0.15 22.78 0.05 35.66 0.07 22.90 0.05
0.85 236.86 0.53 107.97 0.24 41.44 0.09 61.91 0.13 41.71 0.09
0.90 269.89 0.60 167.04 0.37 81.15 0.18 110.38 0.24 81.96 0.19
0.95 265.65 0.59 222.16 0.49 155.61 0.36 183.58 0.41 158.53 0.36
1.00 200.41 0.45 200.04 0.44 199.52 0.45 200.30 0.45 199.90 0.46
1.10 68.48 0.15 63.90 0.14 72.52 0.16 64.10 0.14 64.90 0.14
1.20 26.29 0.05 23.45 0.05 26.26 0.05 22.49 0.05 22.51 0.05
1.30 13.53 0.03 12.14 0.02 13.54 0.02 11.39 0.02 11.39 0.02
1.40 8.53 0.01 7.76 0.01 8.58 0.01 7.10 0.01 7.10 0.01
1.50 6.18 0.01 5.68 0.01 6.21 0.01 5.09 0.01 5.09 0.01
1.60 4.82 0.01 4.47 0.01 4.83 0.01 3.93 0.01 3.93 0.01
1.70 4.01 0.01 3.74 0.00 3.98 0.01 3.22 0.01 3.22 0.01
1.80 3.46 0.00 3.23 0.00 3.40 0.00 2.74 0.00 2.74 0.00
1.90 3.05 0.00 2.85 0.00 2.96 0.00 2.38 0.00 2.39 0.00
2.00 2.74 0.00 2.57 0.00 2.64 0.00 2.14 0.00 2.14 0.00

of the run-length distribution associated with Z-ARL0 = 200 equals 315.5, which is much larger than the counterpart of the
value 219.1 when λ = 0.05. Large variability of run-length distribution at small value of λ usually prevents the practitioner
from choosing it as the smoothing constant to use in practice.

5. Concluding remarks

In this paper, we have proposed and studied two control charting schemes, HHW1 and HHW2 charts, for monitoring
decreases and increases in process variability, respectively. Based on the simulation studies, the HHW2 chart performs
better than the CH, SJ and HHW1 charts for detecting increases in process variability. The HHW1 chart, on the other hand,
significantly outperforms the CH, SJ and HHW2 charts at signaling decreases in process variability. When combining the
lower-sided HHW1 chart with the upper-sided HHW2 chart, the combined HHW-C chart can detect overall changes in
process variability more effectively than the two-sided CH, SJ, HHW1, and HHW2 charts. Unlike the CH and SJ charts which
may have different values of the Z-ARL’s and S-ARL’s at any value of process variability, the proposed HHW1, HHW2 and
HHW-C charts, due to the ad hoc construction, all have the same Z-ARL’s and S-ARL’s at any value of process variability.
Contrary to the result of Shu and Jiang (2008) that an EWMA chart based on the random quantity with a higher SN ratio
will give better sensitivity for detecting increases in process variability, it is demonstrated in this paper that the detection
performance of an EWMA chart for monitoring general changes in process variability has no connection with the SN ratio
of the random quantity used. For monitoring increases in process variability, our proposed HHW2 chart can provide better
design than the SJ chart. However, the standard deviation of the run length distribution associated with an ARL0 should be
taken into account when we use the control chart with optimal parameters to monitor the process.



L. Huwang et al. / Computational Statistics and Data Analysis 54 (2010) 2328–2342 2341

Table 5
The optimal parameters of the SJ and HHW2 charts based on the sample size of n = 5 and 15.

n = 5 Z-ARL0 = 100 Z-ARL0 = 200 Z-ARL0 = 500 Z-ARL0 = 1000
σ/σ0 SJ HHW2 SJ HHW2 SJ HHW2 SJ HHW2

1.1
(λ, L) (0.03, 0.785) (0.01, 0.884) (0.03, 1.270) (0.01, 1.209) (0.03, 1.766) (0.01, 1.650) (0.03, 2.096) (0.01, 1.996)
Z-ARLmin 19.48 10.43 29.89 16.00 47.86 27.58 64.20 40.33
1.2
(λ, L) (0.03, 0.785) (0.01, 0.884) (0.03, 1.270) (0.01, 1.209) (0.04, 1.917) (0.01, 1.650) (0.04, 2.235) (0.01, 1.996)
Z-ARLmin 9.66 4.58 13.91 6.33 20.11 9.86 24.77 13.54
1.3
(λ, L) (0.03, 0.785) (0.01, 0.884) (0.11, 1.989) (0.01, 1.209) (0.12, 2.454) (0.01, 1.650) (0.10, 2.658) (0.01, 1.996)
Z-ARLmin 6.40 2.95 9.06 3.81 11.86 5.51 14.08 7.23
1.4
(λ, L) (0.03, 0.785) (0.01, 0.884) (0.20, 2.27) (0.01, 1.209) (0.16, 2.476) (0.01, 1.650) (0.14, 2.795) (0.01, 1.996)
Z-ARLmin 4.84 2.24 6.37 2.77 8.04 3.77 9.37 4.77
1.5
(λ, L) (0.03, 0.785) (0.01, 0.884) (0.37, 2.502) (0.01, 1.209) (0.27, 2.766) (0.01, 1.650) (0.21, 2.941) (0.01, 1.996)
Z-ARLmin 3.93 1.86 4.80 2.22 5.95 2.88 6.84 3.55
1.6
(λ, L) (0.49, 2.294) (0.01, 0.884) (0.48, 2.573) (0.01, 1.209) (0.38, 2.859) (0.01, 1.650) (0.33, 3.066) (0.01, 1.996)
Z-ARLmin 3.21 1.63 3.80 1.89 4.65 2.36 5.31 2.82
1.7
(λ, L) (0.56, 2.334) (0.01, 0.884) (0.55, 2.604) (0.01, 1.209) (0.52, 2.915) (0.01, 1.650) (0.43, 3.113) (0.01, 1.996)
Z-ARLmin 2.70 1.48 3.14 1.67 3.78 2.02 4.29 2.38
2.0
(λ, L) (0.68, 2.385) (0.01, 0.884) (0.67, 2.642) (0.01, 1.209) (0.67, 2.940) (0.01, 1.650) (0.64, 3.140) (0.01, 1.996)
Z-ARLmin 1.89 1.24 2.10 1.34 2.41 1.52 2.66 1.69

n = 15 Z-ARL0 = 100 Z-ARL0 = 200 Z-ARL0 = 500 Z-ARL0 = 1000
σ/σ0 SJ HHW2 SJ HHW2 SJ HHW2 SJ HHW2

1.1
(λ, L) (0.03, 1.012) (0.01, 0.875) (0.03, 1.463) (0.01, 1.202) (0.04, 2.175) (0.01, 1.656) (0.04, 2.529) (0.01, 1.995)
Z-ARLmin 10.61 4.53 15.27 6.38 21.91 10.11 27.08 13.98
1.2
(λ, L) (0.03, 1.012) (0.01, 0.875) (0.18, 2.506) (0.01, 1.202) (0.14, 2.843) (0.01, 1.656) (0.13, 3.125) (0.01, 1.995)
Z-ARLmin 5.04 2.11 6.56 2.66 8.30 3.70 9.69 4.72
1.3
(λ, L) (0.36, 2.477) (0.01, 0.875) (0.35, 2.828) (0.01, 1.202) (0.26, 3.134) (0.01, 1.656) (0.24, 3.401) (0.01, 1.995)
Z-ARLmin 3.21 1.51 3.82 1.75 4.66 2.23 5.31 2.69
1.4
(λ, L) (0.50, 2.629) (0.01, 0.875) (0.48, 2.957) (0.01, 1.202) (0.42, 3.319) (0.01, 1.656) (0.37, 3.562) (0.01, 1.995)
Z-ARLmin 2.27 1.26 2.62 1.39 3.11 1.65 3.50 1.91
1.5
(λ, L) (0.63, 2.723) (0.01, 0.875) (0.62, 3.048) (0.01, 1.202) (0.57, 3.413) (0.01, 1.656) (0.53, 3.663) (0.01, 1.995)
Z-ARLmin 1.77 1.14 1.99 1.22 2.30 1.37 2.56 1.54
1.6
(λ, L) (0.70, 2.758) (0.01, 0.875) (0.69, 3.080) (0.01, 1.202) (0.66, 3.451) (0.01, 1.656) (0.63, 3.703) (0.01, 1.995)
Z-ARLmin 1.48 1.08 1.62 1.13 1.83 1.23 2.00 1.33
1.7
(λ, L) (0.75, 2.781) (0.01, 0.875) (0.77, 3.112) (0.01, 1.202) (0.72, 3.473) (0.01, 1.656) (0.71, 3.728) (0.01, 1.995)
Z-ARLmin 1.31 1.05 1.40 1.08 1.54 1.14 1.66 1.20
2.0
(λ, L) (0.92, 2.828) (0.01, 0.875) (0.90, 3.145) (0.01, 1.202) (0.87, 3.512) (0.01, 1.656) (0.85, 3.763) (0.01, 1.995)
Z-ARLmin 1.08 1.01 1.11 1.02 1.16 1.03 1.20 1.05

Table 6
The zero-state ARL’s for the SJ chart when (λ, L) = (0.001, 0.0345) and n = 5.

σ/σ0 Z-ARL s.e.

1.0 199.71 1.85
1.1 6.73 0.02
1.2 3.52 0.01
1.3 2.48 0.01
1.4 2.00 0.00
1.5 1.72 0.00
1.6 1.54 0.00
1.7 1.42 0.00
1.8 1.33 0.00
1.9 1.27 0.00
2.0 1.22 0.00
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